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Abstract

I survey work of Steve Ross (1976) and of Douglas Breeden and Robert Litzen-

berger (1978) that first showed how to use options to synthesize more complex

securities. Their results made it possible to infer the risk-neutral measure asso-

ciated with a traded asset, and underpinned the development of the VIX index.

The other main result of Ross (1976), which shows how to infer joint risk-neutral

distributions from option prices, has been much less influential. I explain why,

and propose an alternative approach to the problem. This paper is dedicated

to Steve Ross, and was written for a special issue of the Journal of Portfolio

Management in memory of him.

Why do options have such a central place in finance? One reason is that options

arise “in nature.” A job offer letter gives its recipient the right, but not the obligation,

to accept a job; the owner of an asset has the right, but not the obligation, to sell

it; the owner of a plot of empty land may have the option to develop it; and so on.

Another reason was provided in a classic paper of Ross (1976) and later elaborated

by Breeden and Litzenberger (1978): options help to complete markets. This insight

has become one of the most useful—and one of the few robust—tools in the financial

economist’s toolkit.

Suppose, for example, that the gold price is currently $1000. How much would you

pay to receive the cube root of the price of gold in a year? How much would you pay

for the inverse of the price of gold in a year? If offered the opportunity to trade these

contracts at $10 and $1/1000 respectively, should you buy or sell?

∗London School of Economics. http://personal.lse.ac.uk/martiniw/.
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Remarkably, it turns out that these questions have precise and unambiguous an-

swers if you can observe the prices of European call and put options on gold. I explain

why, in an exposition of the Ross–Breeden–Litzenberger papers. More generally, their

results show that it is possible to infer the risk-neutral distribution of a random variable

from the prices of European options on that random variable.

Equally remarkably, these and related questions—which at first sight might seem

dryly academic—have, indirectly, had tremendous influence on financial markets. A

leading example is the VIX index, whose definition is based1 on the price of a claim

to the logarithm of the level of the S&P 500 index. The Ross–Breeden–Litzenberger

result is also conceptually important: as an example, I use it below to show (in a

considerably more general setting than that of the Black and Scholes (1973) model)

why volatility is central to option pricing.

Unfortunately the result only applies in one dimension: it shows how to determine

the risk-neutral distribution of, say, the price of gold in a year’s time. But it does not

help to determine the joint distribution of the price of gold and the price of platinum;

nor the joint distribution of the dollar-euro and dollar-yen exchange rates; nor the joint

distribution of a given stock and the market index.

In the remainder of the paper, I address the question of whether there is a higher-

dimensional version of the result that would reveal joint distributions such as these.

On the face of it, the “main result,” Theorem 4, of Ross (1976) does exactly this;

and yet that result has had surprisingly little impact. I suggest an explanation for

this fact, and propose an alternative approach that may be better suited for empirical

implementation in practice. It is loosely inspired by the design of a device called a

gamma knife that is used in neurosurgery to irradiate tumors while minimizing the

damage to surrounding tissue.

The Ross–Breeden–Litzenberger result

The risk-neutral expectation operator, E∗t , has the property that the price (at time t)

of a tradable payoff XT (received at time T ) is

1

Rf,t→T
E∗t XT .

1The definition is based on the key contributions of Neuberger (1994) and Carr and Madan (2001),
who built on the work of Ross (1976) and Breeden and Litzenberger (1978).
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Exhibit 1: The Breeden–Litzenberger logic. As ε → 0 in panel (b), the blue dotted
lines converge to the red dashed lines.

The asterisk means that this is the risk-neutral expectation; the subscript t indicates

that it is the expectation conditional on all information known at time t. Rf,t→T is

the gross riskless return from time t to T , which is determined by the corresponding

zero-coupon bond yield. (Technically, therefore, E∗t is the conditional expectation with

respect to the (T − t)-forward measure.)

Breeden and Litzenberger (1978) built on Ross (1976) in showing how to compute

risk-neutral expectations of the form

E∗t g(ST )

for any random variable ST—typically an asset price—on which European options are

traded. So if we observe the prices of options on gold then we can calculate the risk-

neutral expectation of some arbitrary function of the price of gold at some future time

T . For instance, we can use option prices to calculate the risk-neutral distribution of

ST , as

P∗t (ST ∈ [k, k + δ]) = E∗t (1 {ST ∈ [k, k + δ]}) ,

which we can evaluate by applying the Breeden–Litzenberger logic to the function

g(x) = 1 {x ∈ [k, k + δ]}. Then divide by δ and let δ → 0 to compute the risk-neutral

density of ST at k.

The basic idea is illustrated in Exhibit 1. Panel a shows the function g(ST ), viewed

as an analog signal that can be digitized by being cut into “pixels” of width δ.

Next, we construct each pixel out of call options, as shown in panel b: to generate

a payoff of 1 if ST ∈ [k, k + δ] and 0 otherwise, buy 1
ε

calls with strike k − ε, sell 1
ε

3



calls with strike k and 1
ε

calls with strike k + δ, and buy 1
ε

calls with strike k + δ + ε.

Letting ε→ 0, we have built the pixel.

The price of the pixel illustrated in panel b is therefore

lim
ε→0

callt,T (k − ε)− callt,T (k)

ε
−

callt,T (k + δ)− callt,T (k + δ + ε)

ε
= call′t,T (k + δ)− call′t,T (k)

≈ call′′t,T (k)δ,

where the approximation becomes perfect as δ → 0, and where we write callt,T (k) for

the time t price of a European call with strike k that expires at time T . The price of

the digitized function in panel a is thus approximately∑
i

g(ki) call′′t,T (ki)δ.

Finally, we can increase the “resolution” of the resulting digitization by sending δ → 0

to find the exact price of the original (analog) function illustrated in panel a:

price of a claim to g(ST ) =

∫ ∞
0

g(K) call′′t,T (K) dK. (1)

This is the Breeden and Litzenberger (1978) result.2

Exhibit 2 shows a hypothetical collection of call and put option prices; they intersect

at the forward (to time T ) price of the underlying asset, Ft,T . Equation (1) shows that

the price of a claim to g(ST ) depends on the second derivative (in the mathematical

sense) of the call price as a function of strike, callt,T (K). Following Carr and Madan

(2001), we can now integrate by parts twice3 to find a more intuitive expression in

terms of out-of-the-money option prices:

price of a claim to g(ST ) =
g(Ft,T )

Rf,t→T︸ ︷︷ ︸
naive guess

+

∫ Ft,T

K=0

g′′(K) putt,T (K) dK +

∫ ∞
K=Ft,T

g′′(K) callt,T (K) dK︸ ︷︷ ︸
convexity correction

.

(2)

2Breeden and Litzenberger imposed a further assumption that callt,T should be twice differentiable.
This is not needed, because Merton (1973) showed, in another classic paper, that call and put option
prices (considered as a function of strike) are convex. It follows, by Alexandrov’s theorem, that their
second derivatives exist almost everywhere, which is all that is needed for (1) to make sense.

3In more detail: split the range of integration into two pieces, [0, Ft,T ) and [Ft,T ,∞), and use put-
call parity to write call′′t,T = put′′t,T in the lower range. Then integrate by parts twice, using put-call
parity to cancel some of the resulting terms (assuming that the function g behaves sufficiently nicely

4



Ft,T
K

option prices

callt,T HKL put
t,T

HKL

Exhibit 2: The prices, at time t, of call and put options expiring at time T .

Suppose, then, that the (1-year-forward) price of gold is $1000, and that interest

rates are zero (that is, for convenience, Rf,t→T = 1). How much is a claim to the

cube root of the price of gold worth? The first term in (2) is $ 3
√

1000 = $10. The

second and third terms supply the “convexity correction” to this naive first approxi-

mation. Without knowing anything at all about option prices—other than that they

are nonnegative—we can be sure that the price of the cube root contract is less than

$10 because the function g(K) = 3
√
K is concave, so that g′′(K) < 0. Conversely, the

price of an “inverse contract” that pays 1/ST must be more than $1/1000, because the

function g(K) = 1/K is convex. In both cases, the convexity correction will be large

if option prices are high.

Equation (2) reveals a general relationship between option prices and (some notion

of) volatility. Setting g(K) = K2 and neglecting dividends (so that E∗t ST = StRf,t→T

and we can write RT = ST/St for the return on the asset), we find

var∗t RT =
2Rf,t→T

S2
t

{∫ Ft,T

K=0

putt,T (K) dK +

∫ ∞
K=Ft,T

callt,T (K) dK

}
. (3)

Option prices reveal the risk-neutral variance of the underlying asset’s price at time T :

the integrals inside the curly brackets are equal to the shaded area in Exhibit 2. Aside

from its theoretical interest, this result has proved useful empirically. In Martin (2017),

I defined the so-called SVIX index based on this calculation, and provided applications

to forecasting the return on the S&P 500 index. Martin and Wagner (2018) defined

SVIX indexes for individual stocks and show that they can be used to forecast returns

on individual stocks.4

at zero and infinity). The result is (2).

4We also applied this idea in Martin and Ross (2018) to show that under the assumptions made by
Ross (2015), put and call options on a (very) long-dated zero-coupon bond should, in principle, forecast
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The name of the SVIX index is intended to recall the VIX index, which emerges

from (2) on setting g(K) = − logK:

2 (logE∗t RT − E∗t logRT ) = 2Rf,t→T

{∫ Ft,T

0

1

K2
putt,T (K) dK +

∫ ∞
Ft,T

1

K2
callt,T (K) dK

}
.

(4)

If we take the underlying asset to be the S&P 500 index, then the right-hand side of (4)

is the definition of the VIX index (squared), while the left-hand side is a measure of the

variability of the return on the S&P 500 index that has been called its (risk-neutral)

entropy (Alvarez and Jermann, 2005; Backus et al., 2011).

The original motivation for the definition of the VIX index was that if ST follows

a diffusion, we would have

E∗t
∫ T

τ=t

σ2
τ dτ = 2Rf,t→T

{∫ Ft,T

0

1

K2
putt,T (K) dK +

∫ ∞
Ft,T

1

K2
callt,T (K) dK

}
, (5)

where στ is the instantaneous volatility of the underlying asset at time τ . That is, the

formula that defines the VIX index (squared) would also provide the fair strike for a

variance swap if ST followed a diffusion.

Unfortunately the diffusion assumption is strong and demonstrably false; as, there-

fore, is equation (5).5 By contrast, the results of Ross, Breeden, and Litzenberger—and

in particular equations (1)–(4)—rely only on the logic of static replication and there-

fore allow the underlying asset prices to follow essentially any arbitrage-free process.

In contrast, dynamic replication arguments of the type often invoked in the theory

of option pricing, leading up to and beyond the famous formula of Black and Scholes

(1973), require far stronger assumptions about asset price behavior and the ways in

which uncertainty evolves.

the bond’s returns. Testing this prediction is challenging, however, as tolerable approximations to the
long bond option prices that the theory asks for are hard to come by.

5This can be seen directly by looking at financial asset prices, which jump both at predictable
times (eg, when important economic numbers are released) and at unpredictable times (eg, when a
plane hits the World Trade Center); or indirectly, from the fact that variance swap strikes diverge, in
practice, from (5).
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Ross–Breeden–Litzenberger in two dimensions

Ross, Breeden, and Litzenberger tell us how to calculate the risk-neutral distribution of

dollar-yen in a month’s time, or how to calculate the risk-neutral distribution of dollar-

euro in a month’s time. But how do the two interact? What is the joint risk-neutral

distribution of dollar-yen and dollar-euro?

More generally, a practical method of computing quantities of the form E∗t f(S1,T , S2,T )

would have many applications. Most obviously, joint risk-neutral distributions would

be of direct interest in themselves, as they are in the one-dimensional case. A less obvi-

ous example is provided by Kremens and Martin (2018), who argue that the risk-neutral

covariance of a given foreign currency with the S&P 500 index should (in theory) and

does (in practice) forecast the currency’s excess return. As it happens, precisely the

assets whose prices must be observed to reveal this risk-neutral covariance—quanto

forward contracts on the S&P 500 index—are traded. But this is something of a coin-

cidence. Along similar lines, the approach of Martin and Wagner (2018) to forecasting

individual stock returns would be greatly simplified if the risk-neutral covariances of

individual stocks and the S&P 500 index were directly observable. This would be true

if (in addition to stock and index options) outperformance options on stock i, relative

to the index, were widely traded and liquid; as they are not, Martin and Wagner use

a linearization to relate the desired risk-neutral covariances to risk-neutral variances,

which are observable via (3).

The following result of Ross (1976) handles the case in which there are only finitely

many states of the world. I provide a different proof that reveals that the result is

fragile, in a sense that will become clear below. (For that reason, I specialize to the

two-dimensional case for simplicity.)

Result 1 (Ross (1976), two-dimensional case). With finitely many states of the world,

all Arrow–Debreu prices can be inferred from the prices of European calls and puts on

a single, appropriately chosen, linear combination S1,T + λS2,T for some fixed λ ∈ R.

Proof. Suppose there are N states, which can be viewed as points in R2. There are at

most
(
N
2

)
lines joining these points in pairs; on each, S1,T +µiS2,T is constant for some

µi, i = 1, . . . ,
(
N
2

)
. Let λ be a number not equal to any of the µi; then any line of the

form S1,T + λS2,T = constant intersects at most one of the points. By trading options

on the portfolio S1,T + λS2,T , we can create an Arrow security for an arbitrary state
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(s1,T , s2,T ). Let c = s1,T + λs2,T . The payoff on a “butterfly spread,”

1

ε
[max {0, S1,T + λS2,T − (c− ε)} − 2 max {0, S1,T + λS2,T − c}+

+ max {0, S1,T + λS2,T − (c+ ε)}] , (6)

equals 1 if (S1,T , S2,T ) = (s1,T , s2,T ) by the definition of c. Furthermore, by taking

ε > 0 sufficiently small, we can guarantee that |S1,T + λS2,T − c| > ε (and hence that

the payoff (6) is zero) for all (S1,T , S2,T ) 6= (s1,T , s2,T ). The result follows.

102 104 106
S1,T

101

102

103

104

105

S2,T

Exhibit 3: An illustration of Ross’s (1976) result that with finitely many states of the
world, options on S1,T +λS2,T will complete markets, if λ is chosen appropriately. The
dashed line passes through (101, 104) and avoids all other points on the grid; and any
line parallel to the dashed line intersects at most one dot on the grid.

The proof is illustrated in Exhibit 3 with (S1,T , S2,T ) lying on a grid. (The proof

does not require the points to lie on a grid, but it is the relevant case in practice.)

Along the dashed line, S1,T + λS2,T = c for some constants λ and c. As drawn, λ

lies between 1 and 2, while c ensures that the dashed line passes through the point

(101, 104). The key to the proof is that we can arrange things (i.e., choose λ) so that

any line parallel to the dashed line picks out at most one of the dots: that is, for any

given c,

S1,T + λS2,T = c in at most one of the states of the world. (7)

Notice that if a line intersects two or more points, then its slope is a rational number.
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Thus, if we choose λ to be any irrational number,6 property (7) will hold; in Exhibit

3, λ is equal to
√

2. (At this point, the sense in which the result is fragile is starting

to become clear.)

As in the one-dimensional case illustrated in Exhibit 1b, it is possible to buy a

butterfly spread on S1,T + λS2,T that pays off precisely on the dashed line; and as the

line only intersects the state (101, 104), we have synthesized the Arrow–Debreu security

for (101, 104). By the same logic, options on this linear combination can be used to

synthesize all the other Arrow–Debreu securities (by varying the strikes of the options

in the butterfly spread, i.e., by varying c in the above construction).

Why, then, has the approach not been useful in practice? The construction fails

if options are only traded on linear combinations for a limited set of λ, or if the state

space is not finite. If we only observe options on combinations with, say, λ = ±1 or

±1
2
, then the butterfly spread construction will not “separate the dots”: we cannot set

things up so that the dashed lines only intersect a single dot. The larger and finer the

grid, the more difficult it is to ensure that the dashed line threads between points and,

correspondingly, the more extreme are the requirements on λ. If S1,T and S2,T take

values on an infinite grid, then the construction will not work for any rational λ; and

if S1,T and S2,T vary continuously, the result fails even if λ is allowed to be irrational.

The gamma knife

With the earlier results in mind, it is natural to try to synthesize a two-dimensional

pixel, that is, a payoff of $1 if both S1,T ∈ [s1, s1 + δ] and S2,T ∈ [s2, s2 + δ] for

some small δ. It turns out that by taking a different approach, we will be able to

work out the prices of individual pixels so long as we can observe options on multiple

linear combinations of S1,T and S2,T . Moreover, the construction will work even in the

case in which S1,T and S2,T can vary continuously. The key idea is analogous to the

gamma knife technology used by neurosurgeons, in which multiple beams of radiation

are shone at a single target—perhaps a tumor—so that surrounding tissue receives

relatively little harm; and similar ideas arise more generally in X-ray tomography.

Exhibit 4 illustrates how one could use this approach to find the price of a two-

dimensional pixel (as shown, the price of an Arrow–Debreu security that pays off if

S1,T = 3 and S2,T = 5) in an idealized example with perfect data. The line in Exhibit 4a

6This gives a direct way to see that almost any (in a measure-theoretic sense) choice of λ will do,
as was shown by Arditti and John (1980).
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(a) N = 1 (b) N = 4

(c) N = 16 (d) N = 64

Exhibit 4: Using options on linear combinations of the two state variables to create
approximate Arrow–Debreu securities.

corresponds to the dashed line of Exhibit 3: it illustrates the set of points at which a

butterfly spread on S2,T , constructed as in Exhibit 1b, has unit payoff. Exhibit 4b shows

what happens when we also buy a butterfly spread on S1,T , together with butterfly

spreads on S1,T +S2,T and S1,T −S2,T . Strikes are chosen so that all four lines intersect

at the single point of interest. Here, the payoff on the portfolio of butterfly spreads

is four times as great as the payoff on an individual butterfly spread, so we can scale

back position sizes by a factor of 4. Continuing this process, Exhibits 4c and 4d use

options on 16 and 64 different linear combinations of S1,T and S2,T , respectively, to

pick out the point of interest, where the payoff is 1. The resulting payoff approaches

the desired pixel payoff as the number of linear combinations approaches infinity.
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(a) USD/EUR butterfly (b) USD/JPY butterfly

(c) EUR/JPY butterfly (d) All together

Exhibit 5: Using options on linear combinations of the state variables to create ap-
proximate Arrow–Debreu securities.

Exhibit 5 shows a more realistic example, with S1,T corresponding to the USD/EUR

exchange rate and S2,T to the USD/JPY exchange rate. Using options on USD/EUR,

we can create a butterfly spread that pays one unit only if S1,T equals some pre-specified

value, say 1; and using options on USD/JPY, we can create a butterfly spread that

pays one unit only if S2,T equals, say, 100. (The exhibits show approximations to these

securities.) Using options on EUR/JPY we can create a butterfly spread that pays one

unit only if S2,T/S1,T = 100, i.e., S2,T = 100S1,T . Finally, adding the three together,

and scaling the position sizes by 1
3
, we obtain the approximate Arrow–Debreu security

illustrated in Exhibit 5d.7

7Basket options, which have payoffs of the form max {0, a1USD/EUR + a2USD/JPY−K} for a
variety of a1 and a2, move us closer to the examples depicted in Exhibit 4.
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In the interest of completeness, we have the following result. I write f(x, y) for the

joint risk-neutral density of S1,T and S2,T ; and assume that we can observe the prices

of options on arbitrary linear combinations of S1,T and S2,T .8 We can then construct a

butterfly spread, as in (6), that pays off along an arbitrary line L parametrized by p,

its distance from the origin, and α ∈ [0, π), the angle of the normal to L. The butterfly

spread associated with L reveals

Rf(L) = Rf(p, α) =

∫ ∞
−∞

f(p cosα− t sinα, p sinα + t cosα) dt.

Result 2 (The gamma knife, two-dimensional9 case). If the prices of options on ar-

bitrary linear combinations aS1,T + bS2,T are observable then we can treat Rf(L) as

observable for all lines L and reconstruct the joint risk-neutral density of S1,T and S2,T

via the formula

f(x, y) = lim
ε→0

1

π

∫ π

0

∫ ∞
−∞

Rf(p− x cosα− y sinα, α)Gε(p) dp dα, (8)

where

Gε(p) =
1

πε2

(
1− 1√

1− ε2/p2

)
if |p| > ε

and Gε(p) = 1/(πε2) otherwise.

Proof. Observability of Rf(L) follows as in the one-dimensional case. The resulting

butterfly spread prices are Radon transforms of the risk-neutral distribution, which can

be recovered by inverting the Radon transform as in equation (8) (see, for example,

Nievergelt, 1986a,b).

Result 2 is an idealization, of course. Practical implementations will have to deal

with a finite (and small) number of “slices,” along the lines illustrated in Exhibit 5.

The analogy with medical practice may be helpful here, as X-ray tomography confronts

precisely the same issue, which has, therefore, received considerable attention in the

literature: see, for example, Shepp and Kruskal (1978).

8This is a strong assumption, though arguably closer to the contracts one observes in reality
than that of Nachman (1989), who proposed an alternative that requires observability of options on
portfolios of options on S1,T and S2,T . While Nachman’s approach is theoretically interesting, prices
of the relevant options-on-options are not observable, even approximately, in practice.

9Result 2 can be extended to N dimensions using higher-dimensional Radon transforms (or the
closely related X-ray transforms), but this extension is unlikely to be implementable in practice.
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Conclusion

In a classic paper, Breeden and Litzenberger (1978) built on a result of Ross (1976) to

show that option prices can be used to infer (one-dimensional) risk-neutral distributions

of variables on which options are traded. One of the other results of Ross (1976)

extended this one-dimensional result to multiple dimensions under certain assumptions.

There are many potential applications of such a result, and even the two-dimensional

case would be of great interest because of the central importance of covariances in

financial economics (see, for example, Kremens and Martin (2018) and Martin and

Wagner (2018) for related examples). Unfortunately, his result depends critically on an

assumption that makes it impossible to implement in reality. This paper has proposed

an alternative approach—the gamma knife—that is more plausibly implementable in

practice.
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